微物理系統(MPS)又稱OrganonChip(OOC)、器官芯片,旨在表征人體組織的結構和功能特征。與傳統的二維平皿細胞培養相比,MPS可以利用多種細胞類型,在三維支架中培養,在灌注狀態下模擬組織中的血流。它們可用于臨床前藥物吸收、分布、代謝和排泄(ADME)研究,以獲得相關的人體數據,并有助于告知劑量方案和有效藥物濃度等參數。MPS包含一系列平臺,這些平臺通過使用微工程技術(通常與3D微環境結合使用)來模仿組織功能的各個方面。此類系統已報告為3D球體,類器guan,器官芯片,靜態微圖案技術和非物理芯片模型。更多關于CNBIO器官芯片相關產品問題,歡迎咨詢上海曼博生物!器官芯片在藥物研發中可用于提高篩選效率和預測藥效.動脈類器官芯片品牌比較
在進入全球研究環境后,單和多器官芯片逐漸成為從疾病模型到藥物再利用的強大藥物發現和開發工具。為了提高臨床成功的機會,制藥行業目前正在評估和采用這些技術,同時技術開發人員繼續追求將MPS應用于藥物開發的追求。CNBio的器官芯片系統,包括單器官芯片和多器官芯片版的PhysioMimix實驗室臺式儀器,使研究人員能夠通過快速、且具有預測性的、基于人體組織的研究,在實驗室中對人體生物學進行建模。該技術彌補了傳統細胞培養與人體研究之間的鴻溝,朝著模擬人體生物學環境的方向前進,以支持加速開發包括傳染病,新陳代謝和炎癥在內的應用領域的新療法。肺臟類器官芯片官方代理商器官芯片的制備需遵循嚴格的質量管控體系和SOP程序。
器官芯片模型的可用性為理解人類疾病的發病機制提供了大量機會,并為篩選藥物提供了潛在的更好模型,因為這些模型利用了類似于人體的動態3D環境。盡管芯片上器guan模型存在局限性,但新技術的出現提高了其轉化研究和精確醫學的能力。全球器官芯片市場按型號和用戶進行細分。模型類型包括肝芯片模型、肺芯片模型、心臟芯片模型、腎芯片模型、定制和多器官芯片模型等,用戶包括制藥公司、研究機構等。器官芯片有潛力為生理相關的體外藥物測試提供更好的試驗預測,能避免由于2D細胞培養和動物實驗等模型缺乏預測性而導致的失敗。英國CN Bio的Physiomimix器官芯片正是基于實現此遠大目標而應運而生。
在一項毒理學研究中證明了在英國CNBio的Physiomimix單器官芯片MPS中灌注肝細胞的價值,該研究捕獲了一個已經明確的肝毒物的作用,并揭示了其類似物(以前被低估)毒性的新穎見解。代謝物以劑量依賴性方式形成,類似于患者用藥過量的情況,白蛋白分泌和谷胱甘肽耗竭測量分別評估肝細胞功能和毒性。而研究人員意識到,由單一細胞類型組成的MPS并不能為所有代謝研究提供完整的解決方案。為了提供更緊密地反映體內肝臟微體系結構復雜性的模型,已經使用多種細胞類型創建了共培養模型.器官芯片的成本和使用門檻也需要進行相應的評估和比較.
逐年增加的文獻發表說明了科學家對器官芯片的關注度增加??梢钥闯鰜?,無數的器官芯片公司獲得資助而成立,比如CN-Bio。我們現在看到來自于學術界、器官芯片供應商、和藥物企業所發表的文獻。CN-Bio也正為這一領域做出貢獻,一篇英國皇家學院的關注NASH的文章正被發表,還有3月初CN和FDA聯合發表的文章,與其藥物評價研究中心( Centre for Drug Evaluation Research ,CDER)合作的重點是使用肝臟MPS作為檢測人類藥物清chu率和藥物引起的肝損傷(DILI)的工具。器官芯片的操作還需要考慮其對細胞分化和表型性質的影響。腸道類器官芯片授權代理商
器官芯片的制備還需要考慮其對細胞穩定性和活性的影響。動脈類器官芯片品牌比較
器官芯片大規模使用還需解決多個方面的難題,包括原代細胞的獲取、特制培養輔助試劑的商品化,以及芯片耗材成本的降低,實驗模型操作的簡化。除了用于藥物開發,器官芯片還可在多個領域發揮 無可比擬的作用,包括環境毒理學評估,化妝品有效和安全性評估等。器官芯片的一個主要應用包括體外評估藥物毒性,毒性是候選藥物失敗以及上市藥物退市的主要原因,涉及到的靶組織主要包括肝臟、心臟等組織,目前開發的器官芯片模型在這些組織中具已經具備成熟的毒性評估模型。英國CN Bio的Physiomimix器官芯片正是基于實現此遠大目標而應運而生。動脈類器官芯片品牌比較