脈沖發電機電源是由原動機、發電機和整流器三部分構成。發電機由原動機拖動,達到額定轉速后發電機將儲存的旋轉勢能轉換為電能,通過整流器變換得到直流電壓對磁體供電。整流器可以通過反饋控制給磁體提供的電壓電流,具有較好的可控性,可以實現對實驗波形的初步調節和控制。由電容器電源和脈沖發電機電源構成磁體主要的電源系統,其中帶有反饋控制的脈沖發電機電源本身具有一定的可控性,可以將平頂磁場紋波控制在一定精度以內,但脈沖發電機電源本身是大容量電源,如果想進一步降低紋波系數,直接對脈沖發電機進行控制難度很大,所以需要在原有兩套電源系統的基礎上再配合使用一個小容量的補償系統。電壓傳感器可以確定、監測和測量電壓的供應。北京循環測試電壓傳感器廠家現貨
DSP控制模塊式整個系統的**大腦,程序的運行和數據的計算都是在DSP內部進行的,同時DSP負責部分**芯片的管理,如AD的工作直接受DSP的控制。TMS320F2812作為眾多DSP芯片中的一種,是TI公司的一款用于控制和數字計算的可編程芯片,在其內部集成了事件管理器、A/D轉換模塊、SCI通信接口、SPI外設接口、通信模塊、看門狗電路、通用數字I/O口等多種功能模塊,研究DSP本身就可以是一門**的學科。類似于單片機,DSP的工作功能是基于**小系統的擴展,在使用DSP時并非一定用到上述所有模塊。在設計好DSP的**小系統(包括電源供電、晶振、復位電路、JTAG下載口電路等)后,根據各個模塊和引腳的具體功能分配片內資源和連接**芯片。北京新能源汽車電壓傳感器發展現狀通過鑒相器檢測光波相位差來實現對外電壓的測量。
在對磁體做放電實驗時,如果**依靠電力電子變換器為磁體提供極大的脈沖式電能則對該電力電子裝置的容量要求特別高,這樣增加了建設成本。于是本項目以實驗室已有的對磁體放電的電源系統為基礎,再利用電力電子裝置作為補償系統,將原有電源系統的精度提高到我們需求的水平。目前采用了高壓儲能電容器電源和脈沖發電機電源作為磁體供電的主要系統。高壓儲能電容器組通過充電機對其充電儲存能量,需要對磁體放電時打開放電開關,電容器組將儲存的能量釋放給磁體。電容器組放電效率高,結構簡單、控制簡單、安全性好。
移相全橋變換器在工作時,通過與開關管并聯的諧振電容和原邊諧振電感諧振,來實現開關管的軟開關。主電路拓撲結構如圖2-4所示。圖中T1和T2為超前臂開關管,T3和T4為滯后臂開關管;C1和C2分別為T1和T2的并聯諧振電容,且C1=C2=Clead;C3和C4分別為T3和T4的并聯諧振電容,且C3=C4=Clag;D1~D4分別為T1~T4的反并聯二極管;Lr為原邊諧振電感;TM為高頻變壓器;DR1~DR4為輸出整流二極管;Lf、L、Ca和Cb分別為輸出濾波電感和濾波電容;Z為輸出負載。當交流電壓通過這些極板時,由于電子通過對面極板電壓的吸引或排斥作用,電流將開始通過。
整個電路的控制**終都歸結于對PWM波的控制,對于移相全橋電路來說,**根本的問題也歸結于如何產生可以自由控制相位差的PWM脈沖。DSP產生脈沖一般是由事件管理器的PWM口和DSP模塊中的數字I/O口實現。由于在移相控制中,四路PWM波要么互補要么有對應一定角度的相位差關系,其中PWM波互補的問題很好解決,但為了方便的控制移相角的大小,須得選用四路有耦合關系的PWM輸出口,以減小程序編寫的復雜性和避免搭建復雜的外圍電路。根據移相全橋的控制策略,四路PWM波須得滿足:1)同一橋臂上兩波形形成帶有死區時間的互補;2)對角橋臂上的驅動波有一個可調的移相角度,移相角的大小與一個固定的參數直接相關以便于實現動態的控制。有兩種主要類型的電壓傳感器: 電容式電壓傳感器和電阻式電壓傳感器。重慶霍爾電壓傳感器廠家
板之間的磁場將創建一個完整的交流電路沒有任何硬件連接。北京循環測試電壓傳感器廠家現貨
控制電路的軟件設計實則是控制方案的具體實施,其中包含了很多模塊的程序編寫,比如DSP的各個單元基本功能的實現、AD的控制、數據的計算處理等。在此只簡述DSP對AD的控制、DSP輸出PWM波移相產生的方式以及控制系統PID閉環的實施方案。對于任何一個數字控制電路來說,要實現對被控對象的實時的、帶反饋的控制則必須要實時監測和采集被控對象的狀態值。AD模塊是被控對象狀態值采集的必要環節,實現數據的準確采集就必須要實現對AD的準確控制。本試驗中選用的AD的芯片是MAX125。北京循環測試電壓傳感器廠家現貨