交聯:通過增強鏈剛度和減少自由體積,交聯可以改變聚合物的納米結構,提高其尺寸吸收能力,而不會明顯影響 H2 的滲透性,尤其是在高溫條件下。在溫和條件下將 m-PBI 薄膜浸泡在對苯二甲酰氯溶液中不同時間,以獲得不同程度的交聯,從而開發出多種交聯膜(圖 9a)。在略微降低 H2 滲透性的同時,交聯改性降低了 CO2 吸附性,從而較大程度上提高了 H2/CO2 選擇性(a)對苯二甲酰氯交聯 m-PBI 的擬議反應機理。(b) m-PBI 和使用對苯二甲酰氯交聯 6 小時(XLPBI-6H)的 m-PBI 在不同溫度下的 H2/CO2 分離性能;數據點從左到右依次為 35、100、150 和 200℃。(c) PBI-H3PO4 復合物的擬議質子轉移和氫鍵。采用類似的方法,以 1,3,5-三(溴甲基)苯為交聯劑,對 m-PBI 薄膜進行化學交聯。膜交聯了 24 小時,通過改變交聯劑的濃度實現了不同程度的交聯。研究發現,增加交聯度會降低自由體積,從而明顯降低二氧化碳的溶解度和擴散度,而 H2 的滲透率只略有下降。PBI塑料的熱穩定性在氮氣中可超過500℃。江蘇PBI密封圈規格
PBI涂層表征方法:涂層附著力和劃痕試驗:使用交叉切割試驗確定涂層與基材分離的阻力。使用工具在涂層表面切割出直角格子圖案,一直穿透到基材。使用劃痕機研究涂層的耐刮擦性。為了研究“臨界載荷”,對每個涂層系統進行了至少 3 次劃痕試驗,速度為 1 mm/s,載荷從 0.5 增加到 100 N,劃痕距離為 15 mm(圖 1)?;瑒幽p試驗:根據 ASTM G176試驗臺,在塊環上進行滑動摩擦和磨損試驗(圖 2)。將固定涂層壓在旋轉的金屬環上。使用的對應物是 100 個 Cr6 鋼環,外徑為 13 mm,平均表面粗糙度為 Ra≈ 0.2 μm。測試在室溫下的干滑動條件下進行,參數如下:標稱初始接觸壓力 = 0.5 MPa、滑動速度 = 1 m/s、測試時間 = 2 h。磨損量通過白光顯微鏡測量。江蘇PBI航空支架尺寸PBI塑料吸收水分后性能會降低。
PBI簡介:為了支持電子、航空航天和工業需求,工程涂料的需求持續增長,每年增長 20%,市場規模接近 10 億美元。人們對替代能源的興趣日益濃厚,傳感器在汽車性能中的普及就是需要熱能涂料的例子。耐腐蝕涂層可延長材料在惡劣環境中的使用壽命。PBI 是由 Hoechst Celanese Corporation 于 20 世紀 50 年代末初次合成的,旨在生產熱穩定產品。較近,該聚合物主要用于支持航空航天中的阻燃產品以及用作防火織物。PBI 涂層已被研究和報道,然而,大部分工作集中于克服生產優良涂層的挑戰。本報告介紹了幾種在各種基材上以一定厚度涂覆 PBI 并獲得所需性能的方法。
氫是地球上較簡單、較豐富的元素之一,只由一對質子和電子組成。雖然氫氣被普遍用作化學原料,但原則上它只是一種儲存和輸送能量的介質,而不是能量的主要來源。目前,H2 主要用于石油提煉和化肥生產。然而,它的可燃性為可持續運輸和公用事業部門提供了額外的用途,較終可能徹底改變這些行業。例如,以碳氫化合物為燃料的傳統內燃機(ICE)會產生大量溫室氣體,與之相比,氫基汽車只會排放水蒸氣作為副產品,這使其成為解決當前氣候危機的一個有前途的方案。氫氣還可用于燃料電池,產生清潔電力。因此,在不久的將來實現氫經濟的愿景是非常現實的。然而,轉型過程面臨著許多挑戰,其中較重要的挑戰之一就是高效、高純度地生產氫氣,這必須由化學分離科學專業人士來解決。以其良好的阻燃性,PBI 塑料常用于建筑材料,增強建筑的防火安全性。
聚苯并咪唑(PBI)的一般化學結構。通過改變 R2,制備了四種不同的 PBI 衍生物,以研究主鏈結構對相應膜的 H2/CO2 分離性能的影響。與商用 m-PBI 相比,在 PBI 主鏈中加入各種笨重、柔韌和受挫的官能團會較大程度上破壞聚合物鏈的致密堆積,較終導致 H2 滲透性明顯提高。然而,正如預期的那樣,H2/CO2 的選擇性也有所下降。Kumbharkar 等人利用 5-叔丁基間苯二甲酸(BuI)作為笨重的二羧酸單體來合成 Bul-PBI,結果降低了鏈的堆積密度,熱穩定性略有下降,而溶劑溶解性卻有所提高。Bul-PBI 膜的擴散選擇性為 37.8(高于 m-PBI),溶解選擇性為 0.15(略低于 m-PBI)。圖 6 顯示了之前報告的研究中測量的改性 PBI 基聚合物的 H2 滲透性和選擇性數據的上限圖。由此可見,在對 PBI 的骨架結構進行處理的同時,通常還要在氣體滲透性和選擇性之間進行權衡。各種 PBI 衍生物的詳細列表見表 S1。憑借高硬度和耐磨性,PBI 塑料可制作刀具涂層,延長刀具使用壽命。江蘇PBI航空支架尺寸
PBI塑料在900℃的高溫下失重只為30%。江蘇PBI密封圈規格
PBI聚合物的化學結構。與其他工程物質相比,PBI聚合物位于聚合物性能三角形的較高溫度指數的頂部。該三角形被分成兩半,左側為非晶態材料,右側為結晶或半結晶材料。相對于其他材料,PBI 的性能超過了用于解決行業較復雜挑戰的未填充物質的耐熱性能。聚合物的耐熱性可以通過多種方式來實現。這可能包括與其他更高 Tg 的聚合物混合或通過添加填料。無定形聚合物和熱固性聚合物都可以發生共混。PBI 因其非常高的耐熱性而成為有吸引力的共混聚合物,如表中的 TGA 和其他性能所示。江蘇PBI密封圈規格