在新能源汽車蓬勃發展的當下,生產下線 NVH 測試面臨新挑戰與機遇。與傳統燃油車相比,電動汽車少了發動機的轟鳴,但電機高頻嘯叫、電池管理系統散熱風扇噪聲等問題凸顯。下線 NVH 測試針對這些新能源特色噪聲源,開發專屬測試方案。利用高精度頻譜分析儀,精細定位高頻...
模態分析是生產下線NVH測試技術中的重要環節,它用于研究車輛結構的固有振動特性。車輛結構在受到外界激勵時,會以特定的固有頻率和振動模態進行振動。模態分析通過對車輛進行激勵,并測量其響應,從而獲取結構的模態參數,包括固有頻率、模態振型和模態阻尼等。在實際測試中,...
異音異響EOL下線檢測系統,尤其是在多產線,大量測試中出現的產品質量問題或是臺架控制問題,利用多種多樣的統計學工具比如箱型圖進行快速分析,定位和解決,以對產線生產影響降到比較低單值的趨勢預測可以對產品質量變化進行預警。單值的歷史數據回顧可以對產品不同批次的變化...
異音異響下線檢測是工業生產中確保產品質量和性能的重要環節,主要應用于汽車制造、電子設備制造、家電制造等多個領域。以下是對異音異響下線檢測的詳細解析:一、定義與重要性異音異響是指產品在運行過程中產生的不正常或異常的聲音,這些聲音可能源于產品內部的松動、摩擦、振動...
電驅生產下線NVH測試報告生成與歸檔:在完成電驅系統的所有 NVH 測試項目并確認其性能符合要求后,整理和總結測試過程中獲取的數據、分析結果、優化措施以及**終的測試結論,生成詳細的測試報告。測試報告應包括電驅系統的基本信息、測試設備和方法、測試工況和數據采集...
可以用耳朵靠近設備,或者使用聽診器等工具進行檢測。這種方法對于一些明顯的異響問題比較有效,但對于一些輕微的異音可能不太敏感。振動法:通過檢測產品或設備的振動情況來判斷是否存在異音問題。可以使用振動傳感器等設備進行檢測。振動法可以發現一些隱蔽的故障,但需要專業設...
自動化:現代異響檢測設備通常具備自動化功能,能夠自動完成聲音信號的采集、處理和分析過程,減少了人工干預的需要,降低了勞動強度。智能化:隨著科技的發展,一些先進的異響檢測設備還融入了機器學習等人工智能技術,能夠自動學習并識別不同類型的異響模式,提高了檢測的智能化...
空調系統:空調系統的風扇、壓縮機、冷凝器等部件在運行時可能會產生噪音異響檢測。如果這些部件出現故障或損壞,可能會產生異響。車身及附件:車身結構件、車門、車窗等部件如果松動或損壞,在車輛行駛過程中可能會因振動而產生異響。車輛附件如座椅、安全帶等如果安裝不當或損壞...
下線 NVH 測試數據的分析是一項精細活。海量的數據從傳感器端涌入,專業軟件將其轉化為可視化圖表,如瀑布圖、階次圖等。瀑布圖能清晰呈現不同車速、頻率下的噪聲能量分布,工程師借此識別出噪聲峰值對應的部件或系統;階次圖則在分析旋轉部件引發的振動噪聲時大顯身手,像輪...
常見問題及排查方法在生產下線 NVH 測試中,會遇到一些常見問題。比如,發動機噪聲過大,可能是發動機的隔音罩效果不佳,或者發動機內部零部件的磨損、松動等原因導致。對于這類問題,工程師會首先檢查隔音罩的安裝是否到位,密封性是否良好。若隔音罩無問題,則進一步拆解發...
下線 NVH 測試與零部件供應商緊密關聯。零部件作為整車的基礎單元,其 NVH 特性直接影響整車表現。供應商在提供產品前,需依據整車廠標準進行零部件 NVH 自檢,像汽車座椅的滑軌運動平滑性、內飾板的卡扣裝配緊實度,都關乎車內異響控制。整車廠下線 NVH 測試...
生產下線NVH測試。軸承振動與噪聲測試:軸承是電驅系統中的重要支撐部件,其運轉狀況直接影響系統的 NVH 性能。利用加速度傳感器監測軸承在徑向和軸向的振動情況,通過頻譜分析識別軸承的故障特征頻率,如內圈、外圈、滾動體的故障頻率及其諧波,以及由軸承缺陷引起的沖擊...
測試數據采集與分析在生產下線 NVH 測試中,大量的數據被采集并進行深入分析。測試設備收集到的噪聲、振動等數據,會實時傳輸到數據分析系統中。專業的軟件對這些數據進行處理,繪制出各種圖表,如頻譜圖、時域圖等,以便工程師直觀地觀察數據的變化趨勢和特征。通過數據分析...
生產下線測試標準: 國際標準:如ISO362-1(汽車外部噪聲測量標準)規定了汽車外部噪聲的測量方法和限值。它明確了測量的環境條件(如風速、背景噪聲等)、車輛行駛軌跡和測量位置等細節內容。ISO5349(機械振動-人體暴露于手-傳振動的測量和評價標準...
時域分析是生產下線NVH測試數據分析的重要方法之一,它直接在時間軸上對采集到的噪聲和振動數據進行分析。通過時域分析,可以直觀地觀察到信號隨時間的變化情況。例如,在發動機啟動和加速過程中,通過時域分析能清晰看到噪聲和振動幅值如何隨時間上升,以及是否存在異常的峰值...
常見問題及排查方法在生產下線 NVH 測試中,會遇到一些常見問題。比如,發動機噪聲過大,可能是發動機的隔音罩效果不佳,或者發動機內部零部件的磨損、松動等原因導致。對于這類問題,工程師會首先檢查隔音罩的安裝是否到位,密封性是否良好。若隔音罩無問題,則進一步拆解發...
新能源汽車的特殊性要求生產下線 NVH 測試環境和設備具備相應的適應性。測試環境方面,除了常規的低噪聲、無外界振動干擾等要求外,由于新能源汽車的高電壓特性,還需考慮測試場地的電氣安全問題,確保測試人員和設備的安全。在設備方面,由于新能源汽車的噪聲和振動頻率特性...
生產下線 NVH(Noise、Vibration、Harshness)測試是指在汽車、機械產品等設備完成生產裝配,即將交付使用之前,對其進行的關于噪聲、振動和聲振粗糙度的系統性測試。它是產品質量控制的關鍵環節,用于評估產品在實際運行狀態下產生的聲音和振動是否符...
新能源汽車由于沒有發動機的轟鳴聲掩蓋其他噪聲,車內噪聲源更加凸顯。除了動力系統和電池系統產生的噪聲,風噪、胎噪以及車身結構振動噪聲等對車內舒適性影響更大。在生產下線車內NVH噪聲測試中,要在車內不同位置布置麥克風,如駕駛員耳部、后排乘客耳部等位置,***采集車...
電驅生產下線測試。聲學模態測試:通過對電驅系統施加特定的激勵信號(如力錘敲擊或白噪聲激勵),同時使用加速度傳感器和麥克風測量電驅表面各點的振動響應和輻射噪聲,利用模態分析軟件計算電驅系統的聲學模態參數,包括固有頻率、模態振型和阻尼比等。聲學模態測試有助于了解電...
振動測試部件振動:針對產品的關鍵部件,如汽車的發動機、變速器、底盤等進行振動測試。通過在部件表面安裝加速度傳感器,測量其在工作狀態下的振動加速度、振動頻率和振動位移。以發動機為例,測試其在不同轉速下的振動情況,檢查是否存在異常振動,如不平衡引起的高頻振動或松動...
振動傳感器是生產下線NVH測試用于監測車輛振動情況的關鍵設備。常見的振動傳感器有加速度傳感器、位移傳感器和速度傳感器等,其中加速度傳感器應用**為***。加速度傳感器能夠精確測量車輛部件在運行過程中的振動加速度。在車輛NVH測試時,會將加速度傳感器安裝在發動機...
常見問題及排查方法在生產下線 NVH 測試中,會遇到一些常見問題。比如,發動機噪聲過大,可能是發動機的隔音罩效果不佳,或者發動機內部零部件的磨損、松動等原因導致。對于這類問題,工程師會首先檢查隔音罩的安裝是否到位,密封性是否良好。若隔音罩無問題,則進一步拆解發...
汽車電機生產下線 NVH 測試對提升品牌形象意義重大。在競爭激烈的汽車市場,消費者越發注重駕乘體驗,靜謐舒適的車內環境成為購車關鍵考量。品牌旗下車輛若能在 NVH 測試中表現***,意味著消費者在日常使用中免受噪音滋擾,無論是通勤途中的電話溝通,還是長途旅行的...
電機異音異響數據分析與綜合評估數據分析:對各項檢測數據進行收集、整理和分析,以***評估電機的性能和質量。綜合評估:結合外觀檢查、功能測試、異響檢測、電氣性能檢測以及兼容性測試的結果,綜合判斷電機是否符合EOL標準。注意事項確保檢測環境:檢測環境應清潔、安靜、...
生產下線NVH測試。軸承振動與噪聲測試:軸承是電驅系統中的重要支撐部件,其運轉狀況直接影響系統的 NVH 性能。利用加速度傳感器監測軸承在徑向和軸向的振動情況,通過頻譜分析識別軸承的故障特征頻率,如內圈、外圈、滾動體的故障頻率及其諧波,以及由軸承缺陷引起的沖擊...
生產下線NVH測試環境的搭建至關重要,它直接影響測試結果的準確性與可靠性。理想的測試環境應盡可能模擬車輛實際行駛工況。首先,場地選擇要遠離大型工廠、交通主干道等噪聲源,以減少外界干擾。測試場地的地面需平整且具有良好的吸聲性能,避免因地面反射導致噪聲測量誤差。對...
生產下線NVH 測試的重要性。NVH 測試的重要性在汽車生產流程中,生產下線 NVH 測試處于關鍵地位。NVH 即噪聲、振動與聲振粗糙度(Noise、Vibration、Harshness),它直接影響著駕乘人員的體驗。一輛 NVH 性能不佳的汽車,即便動力強...
例如,對于振動數據,可以采用快速傅里葉變換(FFT)將時域信號轉換為頻域信號,分析不同頻率成分的能量分布。通過與正常狀態下的頻譜進行對比,可以發現異常頻率成分,進而判斷是否存在早期損壞。此外,還可以利用機器學習和人工智能技術對大量的歷史數據和監測數據進行訓練和...
減速機總成耐久試驗早期損壞監測系統是一個復雜的集成系統,它包括傳感器、數據采集設備、數據傳輸網絡、數據分析處理軟件和顯示終端等多個部分。傳感器負責采集減速機的各種運行參數,如振動、溫度、油液等信息。數據采集設備將傳感器采集到的模擬信號轉換為數字信號,并進行初步...