激光雷達是實現更高級別自動駕駛(L3級別以上),以及更高安全性的良好途徑,相比于毫米波雷達,激光雷達的分辨率更高、穩定性更好、三維數據也更可靠。什么是激光雷達?激光雷達(LiDAR)是光探測與測距(Light Detection and Ranging)技術的縮寫。在工作過程中,激光束從光源發射并被場景中的物體反射回探測器,通過測量光束飛行時間(Time of Flight,簡稱ToF),可以推算出場景內物體的距離,并生成距離地圖。所謂雷達,就是用電磁波探測目標的電子設備。激光雷達(LightDetectionAndRanging,簡稱"LiDAR"),顧名思義就是以激光來探測目標的雷達。我們知道波長與頻率成反比,波長越長,衍射能力越強,傳播的距離也就越長。Mid - 360 輕巧易嵌入,為移動機器人外觀設計帶來更多創意空間。云南激光雷達市場價格
工作原理,相控陣雷達發射的是電磁波,OPA(Optical Phase Array的簡稱,即光學相控陣)激光雷達發射的是光,而光和電磁波一樣也表現出波的特性,所以原理上是一樣的。波與波之間會產生干涉現象,通過控制相控陣雷達平面陣列各個陣元的電流相位,利用相位差可以讓不同的位置的波源會產生干涉(類似的是兩圈水波相互疊加后,有的方向會相互抵消,有的會相互增強),從而指向特定的方向,往復控制便得以實現掃描效果。利用光的相干性質,通過人為控制相位差實現不同方向的光發射效果;我們知道光和電磁波一樣也表現出波的特性,因此同樣可以利用相位差控制干涉讓激光“轉向”特定的角度,往復控制實現掃描效果。江蘇多線激光雷達正規建筑行業內激光雷達快速掃描建模,輔助設計與施工。
現代雷達的波長一般是到米級別,例如火控雷達的波長是1-5厘米,汽車雷達的波長是1-10毫米。當波長進一步壓縮(頻率進一步提高),在紅外線、可見光、紫外線區域即可激發出激光,用激光做探測源的雷達,稱為激光雷達。1928年,德國的Landenburg(蘭登伯格)在研究氛氣色散現象實驗間接證實了受激輻射的存在,也直接給出了受激輻射的發生條件是粒子數反轉。1947年,Lamb(蘭姆)和Reherford(雷瑟福)在氧原子光譜中發現了明顯的受激輻射這是受激輻射頭一次被實驗驗證,蘭姆也因此在1955年獲得了諾貝爾物理學獎。1950年,法國物理學家Kastler(卡斯特勒)提出了光學泵浦的方法。他也因為提出了這種利用光學于段研究微波諧振的方法而獲諾貝爾獎。
LiDAR還能夠用于確定測量目標的速度。這可以通過多普勒方法或快速連續測距來實現。例如,可以使用LiDAR系統測量風速和車速。另外,LiDAR系統能夠用于建立動態場景的三維模型,這是自動駕駛中會遇到的情形。這可以通過多種方式來實現,通常使用的是掃描的方式。LiDAR 技術中的挑戰,在可實現的LiDAR系統中存在一些眾所周知的挑戰。這些挑戰根據LiDAR系統的類型有所不同。以下是一些示例:隔離和抑制發射光束的信號——探測光束的輻射亮度通常遠大于回波光束。必須注意確保探測光束不會被系統自身反射或散射回接收器,否則探測器將會因為飽和而無法探測外部目標。激光雷達在醫療領域被用于人體三維掃描和診斷。
多傳感器融合,在環境監測傳感器中,超聲波雷達主要用于倒車雷達以及自動泊車中的近距離障礙監測,攝像頭、毫米波雷達和激光雷達則普遍應用于各項 ADAS 功能中。四類傳感器的探測距離、分辨率、角分辨率等探測參數各異,對應于物體探測能力、識別分類能力、三維建模、抗惡劣天氣等特性優劣勢分明。各種傳感器能形成良好的優勢互補,融合傳感器的方案已成為主流的選擇。激光雷達LiDAR的全稱為Light Detection and Ranging激光探測和測距,又稱光學雷達。具備主動抗串擾能力,Mid - 360 在復雜室內雷達環境互不干擾。北京國產激光雷達規格
覽沃 Mid - 360 混合固態技術優越,實現 360° 全向超大視場角感知。云南激光雷達市場價格
激光的誕生,光子入射到物質中,以刺激電子從較高能級過渡到較低能級,并發射光子。當原子處于某種激發態時,有能量合適的光子從該原子附近通過,該原子就會釋放出一個具有同樣電勢能的光子,從而躍遷到低能級狀態。入射光子和發射光子具有相同的波長和相位,該波長對應于兩個能級之間的能量差。一個光子刺激一個原子發射另一個光子,因此產生兩個相同的光子,1917年,愛因斯坦在量子理論的基礎上提出了一個嶄新的概念一一受激輻射:即在物質與輻射場的相互作用中,構成物質的原子或分子可以在光子的激勵下產生光子。云南激光雷達市場價格