天津第三方軟件檢測(cè)公司

來(lái)源: 發(fā)布時(shí)間:2025-04-28

    圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構(gòu)圖。圖5是前端融合模型的準(zhǔn)確率變化曲線圖。圖6是前端融合模型的對(duì)數(shù)損失變化曲線圖。圖7是前端融合模型的檢測(cè)混淆矩陣示意圖。圖8是規(guī)范化前端融合模型的檢測(cè)混淆矩陣示意圖。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構(gòu)圖。圖11是后端融合模型的準(zhǔn)確率變化曲線圖。圖12是后端融合模型的對(duì)數(shù)損失變化曲線圖。圖13是后端融合模型的檢測(cè)混淆矩陣示意圖。圖14是規(guī)范化后端融合模型的檢測(cè)混淆矩陣示意圖。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構(gòu)圖。圖17是中間融合模型的準(zhǔn)確率變化曲線圖。圖18是中間融合模型的對(duì)數(shù)損失變化曲線圖。圖19是中間融合模型的檢測(cè)混淆矩陣示意圖。圖20是規(guī)范化中間融合模型的檢測(cè)混淆矩陣示意圖。圖21是中間融合模型的roc曲線圖。具體實(shí)施方式下面將結(jié)合本發(fā)明實(shí)施例中的附圖,對(duì)本發(fā)明實(shí)施例中的技術(shù)方案進(jìn)行清楚、完整地描述,顯然,所描述的實(shí)施例**是本發(fā)明一部分實(shí)施例,而不是全部的實(shí)施例。基于本發(fā)明中的實(shí)施例,本領(lǐng)域普通技術(shù)人員在沒有做出創(chuàng)造性勞動(dòng)前提下所獲得的所有其他實(shí)施例,都屬于本發(fā)明保護(hù)的范圍。艾策科技發(fā)布產(chǎn)品:智能企業(yè)管理平臺(tái)。天津第三方軟件檢測(cè)公司

天津第三方軟件檢測(cè)公司,測(cè)評(píng)

    保留了較多信息,同時(shí)由于操作數(shù)比較隨機(jī),某種程度上又沒有抓住主要矛盾,干擾了主要語(yǔ)義信息的提取。pe文件即可移植文件導(dǎo)入節(jié)中的動(dòng)態(tài)鏈接庫(kù)(dll)和應(yīng)用程序接口(api)信息能大致反映軟件的功能和性質(zhì),通過一個(gè)可執(zhí)行程序引用的dll和api信息可以粗略的預(yù)測(cè)該程序的功能和行為。belaoued和mazouzi應(yīng)用統(tǒng)計(jì)khi2檢驗(yàn)分析了pe格式的惡意軟件和良性軟件的導(dǎo)入節(jié)中的dll和api信息,分析顯示惡意軟件和良性軟件使用的dll和api信息統(tǒng)計(jì)上有明顯的區(qū)別。后續(xù)的研究人員提出了挖掘dll和api信息的惡意軟件檢測(cè)方法,該類方法提取的特征語(yǔ)義信息豐富,但*從二進(jìn)制可執(zhí)行文件的導(dǎo)入節(jié)提取特征,忽略了整個(gè)可執(zhí)行文件的大量信息。惡意軟件和被***二進(jìn)制可執(zhí)行文件格式信息上存在一些異常,這些異常是檢測(cè)惡意軟件的關(guān)鍵。研究人員提出了基于二進(jìn)制可執(zhí)行文件格式結(jié)構(gòu)信息的惡意軟件檢測(cè)方法,這類方法從二進(jìn)制可執(zhí)行文件的pe文件頭、節(jié)頭部、資源節(jié)等提取特征,基于這些特征使用機(jī)器學(xué)習(xí)分類算法處理,取得了較高的檢測(cè)準(zhǔn)確率。這類方法通常不受變形或多態(tài)等混淆技術(shù)影響,提取特征只需要對(duì)pe文件進(jìn)行格式解析,無(wú)需遍歷整個(gè)可執(zhí)行文件,提取特征速度較快。軟件測(cè)評(píng)安全創(chuàng)新光譜分析技術(shù)賦能艾策檢測(cè),實(shí)現(xiàn)食品藥品中微量有害物質(zhì)的超痕量檢測(cè)。

天津第三方軟件檢測(cè)公司,測(cè)評(píng)

    比黑盒適用性廣的優(yōu)勢(shì)就凸顯出來(lái)了。[5]軟件測(cè)試方法手動(dòng)測(cè)試和自動(dòng)化測(cè)試自動(dòng)化測(cè)試,顧名思義就是軟件測(cè)試的自動(dòng)化,即在預(yù)先設(shè)定的條件下運(yùn)行被測(cè)程序,并分析運(yùn)行結(jié)果。總的來(lái)說(shuō),這種測(cè)試方法就是將以人驅(qū)動(dòng)的測(cè)試行為轉(zhuǎn)化為機(jī)器執(zhí)行的一種過程。對(duì)于手動(dòng)測(cè)試,其在設(shè)計(jì)了測(cè)試用例之后,需要測(cè)試人員根據(jù)設(shè)計(jì)的測(cè)試用例一步一步來(lái)執(zhí)行測(cè)試得到實(shí)際結(jié)果,并將其與期望結(jié)果進(jìn)行比對(duì)。[5]軟件測(cè)試方法不同階段測(cè)試編輯軟件測(cè)試方法單元測(cè)試單元測(cè)試主要是對(duì)該軟件的模塊進(jìn)行測(cè)試,通過測(cè)試以發(fā)現(xiàn)該模塊的實(shí)際功能出現(xiàn)不符合的情況和編碼錯(cuò)誤。由于該模塊的規(guī)模不大,功能單一,結(jié)構(gòu)較簡(jiǎn)單,且測(cè)試人員可通過閱讀源程序清楚知道其邏輯結(jié)構(gòu),首先應(yīng)通過靜態(tài)測(cè)試方法,比如靜態(tài)分析、代碼審查等,對(duì)該模塊的源程序進(jìn)行分析,按照模塊的程序設(shè)計(jì)的控制流程圖,以滿足軟件覆蓋率要求的邏輯測(cè)試要求。另外,也可采用黑盒測(cè)試方法提出一組基本的測(cè)試用例,再用白盒測(cè)試方法進(jìn)行驗(yàn)證。若用黑盒測(cè)試方法所產(chǎn)生的測(cè)試用例滿足不了軟件的覆蓋要求,可采用白盒法增補(bǔ)出新的測(cè)試用例,以滿足所需的覆蓋標(biāo)準(zhǔn)。其所需的覆蓋標(biāo)準(zhǔn)應(yīng)視模塊的實(shí)際具體情況而定。

    后端融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖13所示,規(guī)范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構(gòu)如圖16所示,中間融合方式用深度神經(jīng)網(wǎng)絡(luò)從三種模態(tài)的特征分別抽取高等特征表示,然后合并學(xué)習(xí)得到的特征表示,再作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入訓(xùn)練模型,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。圖16中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是128,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且3個(gè)隱含層中間間隔設(shè)置有dropout層。用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,其第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且2個(gè)隱含層中間設(shè)置有dropout層。用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是512,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是384,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是256,第四個(gè)隱含層的神經(jīng)元個(gè)數(shù)是125。無(wú)障礙測(cè)評(píng)認(rèn)定視覺障礙用戶支持功能缺失4項(xiàng)。

天津第三方軟件檢測(cè)公司,測(cè)評(píng)

    Alpha測(cè)試主要是對(duì)軟件產(chǎn)品的功能、局域化、界面、可使用性以及性能等等方面進(jìn)行評(píng)價(jià)。而Beta測(cè)試是在實(shí)際環(huán)境中由多個(gè)用戶對(duì)其進(jìn)行測(cè)試,并將在測(cè)試過程中發(fā)現(xiàn)的錯(cuò)誤有效反饋給軟件開發(fā)者。所以在測(cè)試過程中用戶必須定期將所遇到的問題反饋給開發(fā)者。[2]軟件測(cè)試方法重要性編輯軟件測(cè)試的目的就是確保軟件的質(zhì)量、確認(rèn)軟件以正確的方式做了你所期望的事情,所以他的工作主要是發(fā)現(xiàn)軟件的錯(cuò)誤、有效定義和實(shí)現(xiàn)軟件成分由低層到高層的組裝過程、驗(yàn)證軟件是否滿足任務(wù)書和系統(tǒng)定義文檔所規(guī)定的技術(shù)要求、為軟件質(zhì)量模型的建立提供依據(jù)。軟件的測(cè)試不*是要確保軟件的質(zhì)量,還要給開發(fā)人員提供信息,以方便其為風(fēng)險(xiǎn)評(píng)估做相應(yīng)的準(zhǔn)備,重要的是他要貫穿在整個(gè)軟件開發(fā)的過程中,保證整個(gè)軟件開發(fā)的過程是高質(zhì)量的。[6]軟件測(cè)試時(shí)在軟件設(shè)計(jì)及程序編碼之后,在軟件運(yùn)行之前進(jìn)行**為合適。考慮到測(cè)試人員在軟件開發(fā)過程中的尋找Bug、避免軟件開發(fā)過程中的缺陷、關(guān)注用戶的需求等任務(wù),所以作為軟件開發(fā)人員,軟件測(cè)試要嵌入在整個(gè)軟件開發(fā)的過程中,比如在軟件的設(shè)計(jì)和程序的編碼等階段都得嵌入軟件測(cè)試的部分,要時(shí)時(shí)檢查軟件的可行性,但是作為的軟件測(cè)試工作。用戶體驗(yàn)測(cè)評(píng)中界面交互評(píng)分低于同類產(chǎn)品均值15.6%。天津第三方軟件檢測(cè)公司

可靠性評(píng)估連續(xù)運(yùn)行72小時(shí)出現(xiàn)2次非致命錯(cuò)誤。天津第三方軟件檢測(cè)公司

    這種傳統(tǒng)方式幾乎不能檢測(cè)未知的新的惡意軟件種類,能檢測(cè)的已知惡意軟件經(jīng)過簡(jiǎn)單加殼或混淆后又不能檢測(cè),且使用多態(tài)變形技術(shù)的惡意軟件在傳播過程中不斷隨機(jī)的改變著二進(jìn)制文件內(nèi)容,沒有固定的特征,使用該方法也不能檢測(cè)。新出現(xiàn)的惡意軟件,特別是zero-day惡意軟件,在釋放到互聯(lián)網(wǎng)前,都使用主流的反**軟件測(cè)試,確保主流的反**軟件無(wú)法識(shí)別這些惡意軟件,使得當(dāng)前的反**軟件通常對(duì)它們無(wú)能為力,只有在惡意軟件大規(guī)模傳染后,捕獲到這些惡意軟件樣本,提取簽名和更新簽名庫(kù),才能檢測(cè)這些惡意軟件。基于數(shù)據(jù)挖掘和機(jī)器學(xué)習(xí)的惡意軟件檢測(cè)方法將可執(zhí)行文件表示成不同抽象層次的特征,使用這些特征來(lái)訓(xùn)練分類模型,可實(shí)現(xiàn)惡意軟件的智能檢測(cè),基于這些特征的檢測(cè)方法也取得了較高的準(zhǔn)確率。受文本分類方法的啟發(fā),研究人員提出了基于二進(jìn)制可執(zhí)行文件字節(jié)碼n-grams的惡意軟件檢測(cè)方法,這類方法提取的特征覆蓋了整個(gè)二進(jìn)制可執(zhí)行文件,包括pe文件頭、代碼節(jié)、數(shù)據(jù)節(jié)、導(dǎo)入節(jié)、資源節(jié)等信息,但字節(jié)碼n-grams特征通常沒有明顯的語(yǔ)義信息,大量具有語(yǔ)義的信息丟失,很多語(yǔ)義信息提取不完整。此外,基于字節(jié)碼n-grams的檢測(cè)方法提取代碼節(jié)信息考慮了機(jī)器指令的操作數(shù)。天津第三方軟件檢測(cè)公司

標(biāo)簽: 測(cè)評(píng)
欧美乱妇精品无乱码亚洲欧美,日本按摩高潮a级中文片三,久久男人电影天堂92,好吊妞在线视频免费观看综合网
亚洲第一天堂国产丝袜熟女 | 日韩中文字幕AV | 亚洲高清AV一区二区三区 | 亚洲中文色欧另类欧美小说 | 亚洲欧美动漫传媒国产日韩 | 亚洲欧美日韩中文在线v日本 |