在環境污染分子的監測分析中,典型的應用有、、。近紅外光譜的一個優點是壓力加寬不是一個很大的問題,因此可以在近大氣壓或開放光程工作。缺點是有許多分子在該譜區沒有吸收,雖然在測量復雜混合物時,這也許是一個優點。中紅外波段工作在3-13μm的“指紋”區,是氣體分子基帶吸收。這個波段分子吸收線的強度比近紅外波段要大幾個量級。如:CH4在,理論檢測下限可達;CO在,理論檢測可達。通常分子在這個波段的振動和轉動光譜譜線非常豐富密集,典型的光譜線寬約為2×10-3cm-1(~60MHz)。中紅外波段激光光譜技術目前主要受到激光光源的限制,但近幾年來,隨著紅外激光技術的發展和新型中紅外相干光源技術的發展,在中紅外波段進***體分子的超高靈敏檢測技術有了長足的進步。 DFB激光器能避免其他背景氣體的交叉干擾,使檢測系統具有較好的測量精度。廣西NOQCL激光器供應商
工農業生產、化石燃料燃燒、機動車尾氣排放等人類活動產生的過量溫室氣體加劇了全球氣候變暖,研究和發展適用于不同空間、時間尺度的溫室氣體精確、快速、動態檢測技術是環境氣候研究的基礎和前提。基于光譜學原理的氣體檢測技術,具有非接觸、快響應、高靈敏、大范圍監測等優點,是目前溫室氣體監測技術的主流研究方向。針對當前溫室氣體點源、面源、區域、全球等尺度下的監測需求,綜合利用多種形式的光譜學測量手段,開展地面探測、地基探測、機載探測和星載探測四種典型光學觀測,獲取溫室氣體空間分布、季節變化和年變化的特征和趨勢,這對理解區域碳排放、掌握源匯信息、研究環境氣候變化規律等具有重要意義。二氧化碳(CO2)、甲烷(CH4)、氧化亞氮(N2O)、氫氟碳化合物(HFCs)、全氟碳化合物(PFCs)、六氟化硫(SF6),其中后三種氣體造成溫室效應的能力強,但從對全球升溫的貢獻百分比來說,CO2、CH4和N2O三大主要溫室氣體所占的比例大,它們對全球變暖的總體貢獻占到77%,濃度也呈現出逐年升高的趨勢。 寧夏一氧化氮QCL激光器價格基于 TDLAS 技術的無創檢測方法,且效果明顯。
分子紅外光譜與分子的結構密切相關,是研究表征分子結構的一種有效手段,將一束不同波長的紅外射線照射到物質的分子上,某些特定波長的紅外射線被吸收,形成這一分子的紅外吸收光譜。每種分子都有由其組成和結構決定的獨有的紅外吸收光譜,可以采用與標準化合物的紅外光譜對比的方法來做分析鑒定。紅外光譜法主要研究在振動中伴隨有偶極矩變化的化合物(沒有偶極矩變化的振動在拉曼光譜中出現)。因此,除了單原子和同核分子如Ne、He、H2等之外,幾乎所有的有機化合物在紅外光譜區均有吸收。除光學異構體,某些高分子量的高聚物以及在分子量上只有微小差異的化合物外,凡是具有結構不同的兩個化合物,一定不會有相同的紅外光譜。通常紅外吸收帶的波長位置與吸收譜帶的強度,反映了分子結構上的特點,可以用來鑒定未知物的結構組成或其化學基團;而吸收譜帶的吸收強度與分子組成或化學基團的含量有關,可用以進行定量分析和純度鑒定。由于紅外光譜分析特征性強,氣體、液體、固體樣品都可測定,并具有用量少,分析速度快,不破壞樣品的特點。因此,紅外光譜法不僅與其它許多分析方法一樣,能進行定性和定量分析,而且該法是鑒定化合物和測定分子結構的**有用方法之一。
在現代民用領域,QCL激光器(量子級聯激光器)作為紅外對抗系統的重要組成部分,正逐漸顯示出其不可或缺的地位。隨著技術的不斷進步,以及對安全和效率的日益重視,QCL激光器在紅外對抗中的應用案例層出不窮,展現出其的性能和的適用性。以某國家的防空系統為例,該系統在面對敵方導彈威脅時,采用了QCL激光器紅外對抗技術。這一技術通過精確發射特定波長的激光,成功地干擾了敵方導彈的紅外尋的系統,顯著提高了防空能力。通過這種方式,防空系統不僅能夠有效保護關鍵設施的安全,還能夠降低潛在的經濟損失。這一成功應用案例展示了QCL激光器在實際戰斗環境中的高效性和實用性,同時也反映了現代中科技應用的重要性。 甲烷分子的基頻吸收帶位于在3.3μm附近的中紅外區域。因此用中紅外激光器探測甲烷氣體非常有益。
TDLAS技術具有高靈敏度、高光譜分辨率、快速響應等優點,廣泛應用于氣體的痕量探測。利用氣體吸收譜線隨溫度、氣壓等因素變化的特性,該技術可實現對氣體體系溫度、濃度、速度和流量等參數的測量。無干擾、低價、可小型化等是TDLAS技術的主要優點。我們致力于發展高速(微秒級)、高靈敏(ppb級)、可攜帶式的基于可調諧半導體激光器的氣體測量技術方法,拓展在航空航天、石油化工和燃燒等領域的應用。調諧二極管激光吸收光譜(TDLAS)是激光氣體分析儀**常用的技術之一。其工作原理如下:激光光源:使用調諧半導體激光器作為光源,能夠在特定的窄波段范圍內快速調諧激光波長,精確匹配待測氣體的吸收峰。氣體吸收過程:激光器發射的窄帶單色激光穿過待測氣體樣品。由于特定氣體分子在特定波長處具有吸收峰,部分激光能量被吸收,導致光強度減弱。探測器測量:激光通過氣體后,剩余的激光光強被探測器接收。探測器將光信號轉換為電信號,測量激光強度的衰減。信號處理與濃度計算:分析儀通過計算吸收光譜的強度和形狀,使用朗伯-比爾定律(Beer-LambertLaw)來推導出氣體的濃度。TDLAS技術的高分辨率和高靈敏度使其能夠準確檢測低濃度的氣體。 針對部分疾病,目前已有許多基于 TDLAS 技術的無創檢測方法,且效果明顯。廣西NOQCL激光器供應商
通訊是DFB的主要應用,如1310nm,1550nm DFB激光器的應用,這里主要介紹非通訊波段DFB激光器的應用。廣西NOQCL激光器供應商
直接吸收光譜技術是通過調諧激光頻率到選擇吸收譜線透過率和譜線形狀進行分析,并獲取一些重要信息,如吸收譜線強度和增寬系數。從這些光譜測量得到信息可以推斷出氣體溫度、濃度、氣流速度以及壓力等參數值。信號發生器發生鋸齒波或三角波掃描信號給激光驅動器驅動DFB激光器,激光器輸出激光通過待測氣體,光電探測器接收到透射光,并通過對光強信號進行分析,從而測量得到氣體濃度值。實現直接吸收光譜檢測透射光容易受到背景噪聲的干擾、激光器光強波動等因素的影響,為了減小噪聲的干擾,通常會使用高靈敏光譜技術,如采用波長調制技術對目標信號進行高頻調制,實現抑制高頻背景噪聲,從而極大提高探測靈敏度和精度。信號發生器發生鋸齒波或三角波掃描信號疊加快速正弦頻率f的調制信號給激光驅動器驅動DFB激光器,激光器輸出調制光經過待測氣體,光電探測器接收到吸收后光強,此時將光信號轉換成電信號輸入到鎖相放大器對信號進行解調輸出波長調制的諧波信號,根據諧波信號的值計算得到此時氣體濃度值。 廣西NOQCL激光器供應商