激光功率測量,積分球很容易捕獲或者集成近準直光源例如激光光束或者高度分散的光源(例如激光二極管或VCSEL)。由于積分球獨特幾何結構,激光束功率測量不受激光束偏振及校準的影響。在不影響探測器信號的情況下,該系統可使用開放端口,或可安裝激光二極管模塊或縮孔器的光纖適配器。 (圖5)。可以添加額外的端口來執行并行光譜表征,使其成為可靠的激光二極管壽命測試的理想設備。成像和非成像校準用均勻光源,積分球是一種近乎完美的創造均勻光源的方法。輻射度是離開光源或輻射面的每個立體角的通量密度。輻照度是落在表面上的通量密度,在表面的平面上測量。積分球光源的輸出孔徑在設計正確的情況下,可以產生接近完美的多光譜漫射光源和朗伯光源,與視角無關(圖6)。積分球與數值方法結合,如有限元分析,為復雜問題求解提供可能。D65光源太陽光模擬器模擬器
?激光功率測量,積分球很容易捕獲或者集成近準直光源例如激光光束或者高度分散的光源(例如激光二極管或VCSEL)。由于積分球獨特幾何結構,激光束功率測量不受激光束偏振及校準的影響。在不影響探測器信號的情況下,該系統可使用開放端口,或可安裝激光二極管模塊或縮孔器的光纖適配器。 (圖5)。可以添加額外的端口來執行并行光譜表征,使其成為可靠的激光二極管壽命測試的理想設備。總之,積分球的典型應用涵蓋了光度測量、顏色測量、環境光學測量、光學材料測試、醫學光學測試等領域,為科學研究、工業生產和醫學診斷提供了有力的支持。VIS-NIR光源積分球定制價格在積分球中,空間被劃分為無數個同心球殼,每個球殼都承載著一段歷史。
在光學領域,積分球堪稱神奇的存在。看似普通的球體,卻隱藏著無窮的奧秘。它的名字就預示著它的神奇功能——將光線“積分”起來。那么,這個神奇的積分球究竟是如何做到的呢?想象一下光線進入積分球后的情景,就像進入了一個迷宮。光線在積分球內壁不斷反射,經過精密的設計和計算,確保光線在多次反射后均勻地散布在球體內。無論從哪個角度觀察,都能得到一致的光強分布。這就像小時候玩的彈珠游戲,彈珠在平滑的球體內滾動,不斷反射,較終分散到各個角落。光線在積分球內的行為與之類似,經過不斷的反射和折射,達到均勻分布的效果。
將待測樣品置于球壁或球心,把光束引入球內,并依次照射樣品和球內壁的高漫反射涂層(或已知反射比的標準反射體),從樣品及球內壁反射的光束,經球內多次反射后,在球壁產生的輻射照度與樣品及球內初次被照面的反射比有關。在球內壁另一位置的探測器將分別產生兩個輸出信號,其比值即為樣品反射比的一定測量。若用標準反射體,則探測器的兩個輸出信號比就是樣品與標準反射體的反射比之比值,因此給出反射比的相對測量。將待測樣品置于球壁或球心,把光束引入球內(或在入射孔處放一漫透射體),并在入射孔與樣品之間用擋板屏蔽。進入球內的光束經多次反射后,使球壁成為一個理想的漫射光源。將探測器一次對準樣品和球壁某部位測量,其比值就是樣品的反射比。積分球還可以用于光學實驗中的光傳輸研究,通過觀察球內的光分布,可以研究光的傳播規律。
由于積分球較常用于穩態條件下,隨著積分球涂層反射率的增加和開口端口面積比例的減小,產生穩態輻射度的反射次數越多。因此,積分球設計應嘗試優化這兩個參數,以獲得較佳的輻射通量空間積分。圖2是一個機器人成像系統的圖像,用于通過積分球參考端口映射空間均勻性。涂層,在為積分球選擇涂層時,必須考慮兩個因素:反射率和耐久性。例如,如果有足夠的光線,并且積分球將在可能導致積分球收集污垢或灰塵的環境中使用,則耐久性和可清洗的涂層是您的理想選擇。積分球在光學領域,如光纖通信、激光傳輸等方面,具有重要意義。Spectra-FT精細可調光譜Helios標準光源廠商
利用積分球,可以求解球體表面的光照強度分布,為照明設計提供依據。D65光源太陽光模擬器模擬器
大家好,這里來給大家介紹一下積分球(光度球)的工作原理,歡迎大家指正。積分球,顧名思義,產品為球形結構,直徑從20厘米到3米左右不等,主要用于測量待測光源的光譜范圍與其他光學性質等,產品主要分為內置光源積分球和外置光源積分球。積分球之所以被普遍應用于實驗光學領域,主要原因是被測光源由于強度過大,光電探測裝置無法承載光源的直接照射,需要使光強弱化后才能進行測量,所以積分球應運而生。積分球內壁理論上需要無限接近于理想球面,內壁涂有漫反射材料,確保光源在積分球內部進行充分的漫反射,消耗光強度的同時,不影響其他光學性質。D65光源太陽光模擬器模擬器